LibrosUNED.com

Imagen de Portada

Deep learning

  • Autor: Aaron Courville; Ian Goodfellow; Yoshua Bengio
  • Editorial: The Mit Press

0

Pendiente de reposición  

Precio: Sin confirmar

Si desea recibir información cuando este material se reponga, introduzca su correo..
Correo electronico: Política de Privacidad

Material válido paraClase de materialTipo de materialCarreraCurso
MINERÍA DE DATOSUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN TECNOLOGÍAS DEL LENGUAJE 
MINERÍA DE DATOSUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INVESTIGACIÓN EN INTELIGENCIA ARTIFICIAL 
MINERÍA DE DATOSUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN LENGUAJES Y SISTEMAS INFORMÁTICOS 
DEEP LEARNINGUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA Y CIENCIA DE DATOS 

Reseña

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
“Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.”
—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Detalles

  • Nº de edición:
  • Año de edición: 2017
  • Número de reimpresión:
  • Año de reimpresión:
  • Lugar: INGLATERRA
  • Dimensiones: 0X0
  • Páginas: 800
  • Soporte:
  • ISBN: 9780262035613

 Utilizamos cookies propias y de terceros para fines analíticos y/o estadísticos anonimizados y para la correcta navegación por la web.
Para más información, consulte nuestra Politica de Cookies. Puede aceptar todas las cookies pulsando el botón “Aceptar” o bien configurar su uso.

Aceptar todo