LibrosUNED.com

Imagen de Portada

Introduction to machine learning

  • Autor: Ethem Alpaydin
  • Editorial: MIT Press
  • Observaciones: Idioma: Inglés

0

Pendiente de reposición  

Precio: Sin confirmar

Si desea recibir información cuando este material se reponga, introduzca su correo..
Correo electronico: Política de Privacidad

Material válido paraClase de materialTipo de materialCarreraCurso
SISTEMAS INTELIGENTES Y ADQUISICIÓN DE CONOCIMIENTOUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA 
MÉTODOS DE DESARROLLO Y ANÁLISIS DE ENTORNOS COLABORATIVOS Y REDES SOCIALESUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA 
MÉTODOS DE APRENDIZAJE AUTOMÁTICOUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INVESTIGACIÓN EN INTELIGENCIA ARTIFICIAL 
MINERÍA DE DATOS DE LOS MEDIOS SOCIALESUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA Y CIENCIA DE DATOS 

Reseña

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

Detalles

  • Nº de edición:
  • Año de edición: 2020
  • Número de reimpresión:
  • Año de reimpresión:
  • Lugar: INGLATERRA
  • Dimensiones: 0X0
  • Páginas: 712
  • Soporte:
  • ISBN: 9780262043793

 Utilizamos cookies propias y de terceros para fines analíticos y/o estadísticos anonimizados y para la correcta navegación por la web.
Para más información, consulte nuestra Politica de Cookies. Puede aceptar todas las cookies pulsando el botón “Aceptar” o bien configurar su uso.

Aceptar todo