Imagen de Portada

Introduction to machine learning

  • Autor: Alpaydin, Ethem
  • Editorial: Adaptive computation abd machine learning

0

Pendiente de reposición  

0 €

Actualmente no disponemos de este material en nuestro almacén. Si desea que le informemos cuando haya sido repuesto, introduzca su dirección de correo electrónico en la casilla correspondiente y pulse en el botón Me Interesa. Muchas Gracias.
Dirección de correo electronico:

Material válido paraClase de materialTipo de materialCarreraCurso
SISTEMAS INTELIGENTES Y ADQUISICIÓN DE CONOCIMIENTOUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA 
MÉTODOS DE DESARROLLO Y ANÁLISIS DE ENTORNOS COLABORATIVOS Y REDES SOCIALESUnidad DidácticaBásicoMÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA 

Reseña

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data.

The second edition of Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. In order to present a unified treatment of machine learning problems and solutions, it discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.

All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The text covers such topics as supervised learning, Bayesian decision theory, parametric methods, multivariate methods, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, and reinforcement learning. New to the second edition are chapters on kernel machines, graphical models, and Bayesian estimation; expanded coverage of statistical tests in a chapter on design and analysis of machine learning experiments; case studies available on the Web (with downloadable results for instructors); and many additional exercises.

All chapters have been revised and updated. Introduction to Machine Learning can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.

Detalles

  • Nº de edición:
  • Año de edición: 2009
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Lugar: INGLATERRA
  • Dimensiones:
  • Páginas: 584
  • Soporte:
  • ISBN: 9780262012430

Recomendar a un amigo

Si deseas recomendar este material a un amigo, escribe tu nombre y su dirección de correo electrónico.
Tu nombre: Su e-mail:


Logotipo de la Universidad Nacional de Educación a Distancia

© Fundación Ramón J. Sender 2000-2017. Registrado en España
Centro de la UNED Barbastro [Contacto]

Logotipo de la Fundación Ramón J. Sender

Icono de alerta Las cookies nos permiten ofrecer nuestros servicios. Al navegar por LibrosUNED.com, consideramos que acepta el uso que hacemos de ellas.
Puede cambiar la configuración de cookies en cualquier momento. Para más información, puede consultar nuestro documento de politica de cookies

Cerrar