Imagen de Portada

Data Mining

  • Autor: Witten, Ian H.; Frank, Eibe; Hall, Mark A.
  • Editorial: Morgan Kaufmann

0

Pendiente de reposición  

0 €

Actualmente no disponemos de este material en nuestro almacén. Si desea que le informemos cuando haya sido repuesto, introduzca su dirección de correo electrónico en la casilla correspondiente y pulse en el botón Me Interesa. Muchas Gracias.
Dirección de correo electronico:

Material válido paraClase de materialTipo de materialCarreraCurso
Aprendizaje Estadístico y Data Mining (Plan 09)Unidad DidácticaBásicoACTIVIDAD CON ESTRUCTURA MODULARMODULAR

Reseña

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.

• Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects
• Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
• Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Detalles

  • Nº de edición:
  • Año de edición: 2011
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Lugar: INGLATERRA
  • Dimensiones:
  • Páginas: 664
  • Soporte:
  • ISBN: 9780123748560

Recomendar a un amigo

Si deseas recomendar este material a un amigo, escribe tu nombre y su dirección de correo electrónico.
Tu nombre: Su e-mail:


Logotipo de la Universidad Nacional de Educación a Distancia

© Fundación Ramón J. Sender 2000-2017. Registrado en España
Centro de la UNED Barbastro [Contacto]

Logotipo de la Fundación Ramón J. Sender

Icono de alerta Las cookies nos permiten ofrecer nuestros servicios. Al navegar por LibrosUNED.com, consideramos que acepta el uso que hacemos de ellas.
Puede cambiar la configuración de cookies en cualquier momento. Para más información, puede consultar nuestro documento de politica de cookies

Cerrar