Imagen de Portada

Galois Theory

  • Autor: Rotman, Joseph
  • Editorial: Springer

Si desea recibir información cuando este material se reponga, introduzca su correo..
Correo electronico: Política de Privacidad

Material válido paraClase de materialTipo de materialCarreraCurso
ÁLGEBRA (MATEMÁTICAS)Unidad DidácticaComplementarioGRADUADO EN MATEMÁTICAS2º Curso

Reseña

A clear, efficient exposition of this topic with complete proofs and exercises, covering cubic and quartic formulas; fundamental theory of Galois theory; insolvability of the quintic; Galoiss Great Theorem; and computation of Galois groups of cubics and quartics. Suitable for first-year graduate students, either as a text for a course or for study outside the classroom, this new edition has been completely rewritten in an attempt to make proofs clearer by providing more details. It now begins with a short section on symmetry groups of polygons in the plane, for there is an analogy between polygons and their symmetry groups and polynomials and their Galois groups - an analogy which serves to help readers organise the various field theoretic definitions and constructions. T

he text is rounded off by appendices on group theory, ruler-compass constructions, and the early history of Galois Theory. The exposition has been redesigned so that the discussion of solvability by radicals now appears later and several new theorems not found in the first edition are included.

Detalles

  • Nº de edición:
  • Año de edición: 2013
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Lugar: INGLATERRA
  • Dimensiones:
  • Páginas: 176
  • Soporte:
  • ISBN: 9780387985411

Recomendar a un amigo

Si deseas recomendar este material a un amigo, escribe tu nombre y su dirección de correo electrónico.
Tu nombre: Su e-mail:

Icono de alerta Las cookies nos permiten ofrecer nuestros servicios. Al navegar por LibrosUNED.com, consideramos que acepta el uso que hacemos de ellas.
Puede cambiar la configuración de cookies en cualquier momento. Para más información, puede consultar nuestro documento de politica de cookies

Cerrar