LibrosUNED.com

Imagen de Portada

Analyzing neural time series data

  • Autor: Cohen, Mike X.
  • Editorial: MIT Press

0

Pendiente de reposición  

Precio: Sin confirmar

Si desea recibir información cuando este material se reponga, introduzca su correo..
Correo electronico: Política de Privacidad

Material válido paraClase de materialTipo de materialCarreraCurso
ANÁLISIS DE SEÑALES Y SISTEMASUnidad DidácticaBásicoMASTER INTERUNIVERSITARIO EN METODOLOGÍA DE LAS CIENCIAS DEL COMPORTAMIENTO Y DE LA SALUD. UNED, UCM Y UAM 

Reseña

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.
This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists.

Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button.

The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.

Detalles

  • Nº de edición:
  • Año de edición: 2014
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Lugar: INGLATERRA
  • Dimensiones:
  • Páginas: 0
  • Soporte:
  • ISBN: 9780262019873

 Utilizamos cookies propias y de terceros para fines analíticos y/o estadísticos anonimizados y para la correcta navegación por la web.
Para más información, consulte nuestra Politica de Cookies. Puede aceptar todas las cookies pulsando el botón “Aceptar” o bien configurar su uso.

Aceptar todo