Imagen de Portada

Bayesian Signal Processing. Classical, modern and Particle Filtering Approaches

  • Autor: Candy, James V
  • Editorial: Wiley


Pendiente de reposición  

0 €

Actualmente no disponemos de este material en nuestro almacén. Si desea que le informemos cuando haya sido repuesto, introduzca su dirección de correo electrónico en la casilla correspondiente y pulse en el botón Me Interesa. Muchas Gracias.
Dirección de correo electronico:


New Bayesian approach helps you solve tough problems in signal processing with ease Signal processing is based on this fundamental concept-the extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many advantages of the "Bayesian approach" to model-based signal processing. It clearly demonstrates the features of this powerful approach compared to the pure statistical methods found in other texts. Readers will discover how easily and effectively the Bayesian approach, coupled with the hierarchy of physics-based models developed throughout, can be applied to signal processing problems that previously seemed unsolvable. Bayesian Signal Processing features the latest generation of processors (particle filters) that have been enabled by the advent of high-speed/high-throughput computers. The Bayesian approach is uniformly developed in this book's algorithms, examples, applications, and case studies. Throughout this book, the emphasis is on nonlinear/non-Gaussian problems; however, some classical techniques (e.g. Kalman filters, unscented Kalman filters, Gaussian sums, grid-based filters, et al) are included to enable readers familiar with those methods to draw parallels between the two approaches. Special features include: Unified Bayesian treatment starting from the basics (Bayes's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation techniques (sequential Monte Carlo sampling) Incorporates "classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented Kalman filters; and the "next-generation" Bayesian particle filters Examples illustrate how theory can be applied directly to a variety of processing problems Case studies demonstrate how the Bayesian approach solves real-world problems in practice MATLAB notes at the end of each chapter help readers solve complex problems using readily available software commands and point out software packages available Problem sets test readers' knowledge and help them put their new skills into practice The basic Bayesian approach is emphasized throughout this text in order to enable the processor to rethink the approach to formulating and solving signal processing problems from the Bayesian perspective. This text brings readers from the classical methods of model-based signal processing to the next generation of processors that will clearly dominate the future of signal processing for years to come. With its many illustrations demonstrating the applicability of the Ba


  • Nº de edición:
  • Año de edición: 2008
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Dimensiones:
  • Páginas: 445
  • Soporte: Cartone
  • ISBN: 9780470180945

Recomendar a un amigo

Si deseas recomendar este material a un amigo, escribe tu nombre y su dirección de correo electrónico.
Tu nombre: Su e-mail:

Logotipo de la Universidad Nacional de Educación a Distancia

© Fundación Ramón J. Sender 2000-2016. Registrado en España
Centro de la UNED Barbastro [Contacto]

Logotipo de la Fundación Ramón J. Sender

Icono de alerta Las cookies nos permiten ofrecer nuestros servicios. Al navegar por, consideramos que acepta el uso que hacemos de ellas.
Puede cambiar la configuración de cookies en cualquier momento. Para más información, puede consultar nuestro documento de politica de cookies