Extending the Linear Model with R. Generalized Linear

  • Autor: Faraway, Julian J.
  • Editorial: Chapman & Hall

0

Pendiente de reposición  

Precio: Sin confirmar

Imagen de Portada

Si desea recibir información cuando este material se reponga, introduzca su correo..
Correo electronico: Política de Privacidad

Material válido paraClase de materialTipo de materialCarreraCurso
MODELOS DE REGRESIÓNUnidad DidácticaComplementarioGRADUADO EN MATEMÁTICAS (PLAN 2019)4 º Curso

Reseña

Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics.

New to the Second Edition

- Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models
- New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs)
- Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods
- New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA
- Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available
- Updated coverage of splines and confidence bands in the chapter on nonparametric regression
- New material on random forests for regression and classification
- Revamped R code throughout, particularly the many plots using the ggplot2 package
- Revised and expanded exercises with solutions now included

Demonstrates the Interplay of Theory and Practice

This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.

Detalles

  • Nº de edición:
  • Año de edición: 2016
  • Número de reimpresión:
  • Año de reimpresión: 0
  • Lugar: INGLATERRA
  • Dimensiones:
  • Páginas: 399
  • Soporte:
  • ISBN: 9781498720960